nguyên hàm của ln x

Nguyên hàm In x là dạng bài xích tập luyện khiến cho nhiều học viên bị mất mặt điểm. Vì vậy nhằm ăn hoàn hảo điểm bài xích tập luyện phần này những em cần thiết cầm chắc chắn toàn cỗ công thức rưa rứa rèn luyện thiệt nhiều dạng khác nhau bài xích tập luyện. Hãy xem thêm ngay lập tức nội dung bài viết sau đây nhằm vẫn tồn tại điểm phần này nhé!

1. Khái niệm vẹn toàn hàm lnx

Bạn đang xem: nguyên hàm của ln x

Ta đem hàm số $f(x)$ xác lập bên trên K. Hàm số $f(x)$ đó là vẹn toàn hàm của hàm số $f(x)$ bên trên K nếu như $f'(x)=f(x)$ với $x\in K$. Nguyên hàm của $lnx$ sẽ tiến hành tính như sau:

Đặt $\left\{\begin{matrix}u=lnx\\dv=dx \end{matrix}\right.\Rightarrow \left\{\begin{matrix}
du=\frac{1}{x}dx\\v=x \end{matrix}\right.$

Ta có $\int lnxdx=xlnx-\int dx'=xlnx-x+C$

2. Bảng công thức vẹn toàn hàm của ln(x)

Ta đem bảng công thức nguyên hàm In x và một số trong những vẹn toàn hàm cơ phiên bản thông thường bắt gặp.

Bảng vẹn toàn hàm Inx và một số trong những vẹn toàn hàm cơ bản

3. Cách tính vẹn toàn hàm lnx

3.1. Nguyên hàm ln(x+1)

Ví dụ 1: Với $\int_{1}^{2}ln(x+1)dx=aln3+bln2+c$, nhập cơ a, b, c là những số vẹn toàn. Tính S=a+b=c.

Giải:

Đặt  $\left\{\begin{matrix}u=ln(x+1)\\dv=dx \end{matrix}\right.\Rightarrow \left\{\begin{matrix}
du=\frac{1}{x+1}dx\\v=x+1 \end{matrix}\right.$

Lúc này tao có:

$\int_{1}^{2}ln(x+1)dx= (x+1)ln(x+1)\left|\begin{matrix}
2\\1 \end{matrix}\right.-\int_{1}^{2}dx=3ln3-2ln2-1$

Như vậy: a=3; b=-2; c=-1

$\Rightarrow$ S=a+b+c=0

Ví dụ 2: Tìm vẹn toàn hàm của hàm số sau: $B=x^2Inxdx$

Giải: 

B=$\int x^{2}lnxdx=\int lnxd(\frac{x^{3}}{3})$

=$\frac{x^{3}}{3}lnx-\int \frac{x^{3}}{3}.d(lnx)$

=$\frac{x^{3}}{3}lnx-\int \frac{x^{3}}{3}.\frac{dx}{3}=\frac{x^{3}}{3}lnx-\frac{x^{3}}{9}+C$

Nắm hoàn hảo kiến thức và kỹ năng về vẹn toàn hàm và những kiến thức và kỹ năng Toán đua trung học phổ thông Quốc Gia không giống với cỗ bí quyết độc quyền của VUIHOC ngay!

3.2. Nguyên hàm 1+ln/x

Ví dụ 1:

Tìm vẹn toàn hàm J=$\int \frac{(lnx+1)lnx}{(lnx+1+x)}dx$

Giải:

Ta có: J=$\int \frac{lnx+1}{x(\frac{lnx+1}{x}+1)}^{3}.\frac{lnx}{x^{2}}dx$

Đặt t=$\frac{lnx+1}{x}\Rightarrow dt=\frac{lnx}{x^{2}}dx \Rightarrow J=\int \frac{tdt}{(t+1)^{3}}=\int [\frac{1}{(t+1)^{3}}-\frac{1}{(t+1)^{2}}]dt$

=$-\frac{1}{2(t+1)^{2}}+\frac{1}{t+1}+C$

=$-\frac{x^{2}}{2(lnx+1+x^{2})}+\frac{x}{lnx+x+1}+C$

Ví dụ 2: Tìm vẹn toàn hàm của:

a) ∫x.2x dx

b) ∫(x2-1) ex dx

Giải:

a) Đặt $\left\{\begin{matrix}u=x\\dv=2^{x}dx\Rightarrow \left\{\begin{matrix}
du=dx\\v=\frac{2^{x}}{ln2}. \end{matrix}\right. \end{matrix}\right.$

Ta có: $\int x2^{x}dx=\frac{x.2^{x}}{ln2}-\int \frac{2^{x}}{ln2}dx=\frac{x.2^{x}}{ln2}-\frac{2^{x}}{ln^{2}2}+C$

b) Đặt $\left\{\begin{matrix}u=x^{2}-1\\dv=e^{x}dx \end{matrix}\right.\Rightarrow \left\{\begin{matrix}du=2xdx\\v=e^{x}dx \end{matrix}\right.$

Suy rời khỏi tao có $\int f(x)dx=(x2-1)ex-\int 2x.ex$ dx

Đặt $\left\{\begin{matrix}u=2x\\dv=e^{x}dx \end{matrix}\right.\Rightarrow \left\{\begin{matrix}du=2dx\\v=e^{x}dx \end{matrix}\right.$

Ví dụ 3: Tìm toàn bộ những vẹn toàn hàm của hàm số $f(x)=(3x^{2}+1).lnx$

A. $\int f(x)dx=x(x^{2}+1)lnx-\frac{x^{3}}{3}+C$

B. $\int f(x)dx=x^{3}lnx-\frac{x^{3}}{3}+C$

C. $\int f(x)dx=x(x^{2}+1lnx-\frac{x^{3}}{3}-x+C$

D. $\int f(x)dx=x^{3}lnx-\frac{x^{3}}{3}-x+C$

Giải:

Đặt $\left\{\begin{matrix}u=lnx\\dv=(3x^{2}+1)dx \end{matrix}\right.\Rightarrow \left\{\begin{matrix}du=\frac{1}{x}dx\\v=\int (3x^{2}+1)dx=x^{3}+x \end{matrix}\right.$

$\Rightarrow I=(x^{3}+x)lnx-\int (x^{3}+x)\frac{1}{x}dx=x(x^{2}+1)lnx-\int (x^{2}+1)dx=x(x^{2}+1lnx-\frac{x^{3}}{3}-x+C.$

=> Đáp án C.

3.3. Nguyên hàm của ln(ax+b)

Ví dụ 1:

Bất phương trình $In(2x^2+3)>In(x^2+ax+1)$ nghiệm đích thị với từng số thực khi?

Giải:

Giải việc vẹn toàn hàm của ln(ax+b)

Ví dụ 2: Tính vẹn toàn hàm:

a) $\int 2xln(x-1)dx$

b) $\int \frac{ln(x+1)}{x^{2}}$

Giải:

a) Đặt $\left\{\begin{matrix}u=ln(x-1)\\dv=2xdx \end{matrix}\right.\Rightarrow \left\{\begin{matrix}du=\frac{1}{x-1}dx\\v=x^{2}-1 \end{matrix}\right.$

Ta có $\int 2xln(x-1)dx$

=$(x^{2}-1)ln(x-1)-\int (x+1)dx$

=$(x^{2}-1)ln(x-1)-\int (x+1)dx$

=$(x^{2}-1)ln(x-1)-\frac{x^{2}}{2}-x+C$

Đặt $\left\{\begin{matrix}u=ln(1+x)\\dv=\frac{1}{x^{2}}dt\end{matrix}\right.\Rightarrow \left\{\begin{matrix}
du=\frac{1}{(1+x)}dx\\v=-\frac{1}{x}-1=-\frac{1+x}{x} \end{matrix}\right.$

=> $F(x)=-\frac{1+x}{x}.ln(1+x)+\int \frac{1}{x}dx$

= $-\frac{1+x}{x}ln(1+x)+ln|x|+C$

3.4. Nguyên hàm của ln(x^2+1)dx

Ví dụ 1:

Tìm vẹn toàn hàm I=$xIn(x^2+1)x2+1dx$

Giải:

Tính vẹn toàn hàm của ln(x^2+1)dx

Ví dụ 2:

Cho $\int_{1}^{2}\frac{ln(1+x)}{x^{2}}dx=aln2+bln3$, với a và b là những số hữu tỉ. Tính P=ab

A. P=$\frac{3}{2}$

B. P=0

C. P=$\frac{-9}{2}$

D. P=-3

Giải:

Ta đem I=$\int_{1}^{2}\frac{ln(1+x)}{x^{2}}dx=aln2+bln3$

Đặt $\left\{\begin{matrix}u=ln(1+x)\\dv=\frac{1}{x^{2}}dx \end{matrix}\right.\Rightarrow \left\{\begin{matrix}du=\frac{1}{1+x}dx\\v=-\frac{1}{x} \end{matrix}\right.$

Xem thêm: nửa sau mùa đông gió mùa đông bắc thổi vào nước ta có tính chất lạnh ẩm vì

Khi cơ I=$-\frac{1}{x}ln(1+x)\left|\begin{matrix}
2\\1 \end{matrix}\right.+\int_{1}^{2}\frac{1}{x(1+x)}dx=-\frac{1}{2}ln3+ln2+\int_{1}^{2}(\frac{1}{x}-\frac{1}{1+x})dx$

=$-\frac{1}{2}ln3+ln2+(ln\frac{x}{x+1})\left|\begin{matrix}2\\1 \end{matrix}\right.=-\frac{1}{2}ln3+ln2+2ln2-ln3=3ln2-\frac{3}{2}ln3$

Suy rời khỏi a=3, b=$-\frac{3}{2}$. Vậy P=$ab=\frac{-9}{2}$

Chọn đáp án C.

PAS VUIHOCGIẢI PHÁP ÔN LUYỆN CÁ NHÂN HÓA

Khóa học tập online ĐẦU TIÊN VÀ DUY NHẤT:  

⭐ Xây dựng quãng thời gian học tập kể từ mất mặt gốc cho tới 27+  

⭐ Chọn thầy cô, lớp, môn học tập theo đòi sở thích  

⭐ Tương tác thẳng hai phía nằm trong thầy cô  

⭐ Học đến lớp lại cho tới lúc nào hiểu bài xích thì thôi

⭐ Rèn tips tricks gom tăng cường thời hạn thực hiện đề

⭐ Tặng full cỗ tư liệu độc quyền nhập quy trình học tập tập

Đăng ký học tập demo không lấy phí ngay!!

3.5. Nguyên hàm của hàm số f(x)=ln/x

Ví dụ 1: Tính đạo hàm của hàm số f(x)=1x+In(x)x

Giải:

Ta có: 

y’= $-\frac{1}{x^{2}}+\frac{ln(x)'x-ln(x)'x}{x^{2}}$

=$-\frac{1}{x^{2}}+\frac{1+ln(x)}{x^{2}}=-\frac{ln(x)}{x^{2}}$

Ví dụ 2:

Giả sử tích phân I=$\int_{1}^{5}\frac{1}{1+\sqrt{3x+1}}dx$=a+bln3+cln5. 

Lúc đó:

A. $a+b+c=\frac{5}{3}$

B. $a+b+c=\frac{4}{3}$

C. $a+b+c=\frac{7}{3}$

D. $a+b+c=\frac{8}{3}$

Giải:

Đặt t = $\sqrt{3x+1}\Rightarrow dx=\frac{2}{3}tdt$

Đổi cận

Ta đem I=$\int_{1}^{5}\frac{1}{1+\sqrt{3x+1}}dx=\int_{1}^{4}\frac{1}{1+t}.\frac{2}{3}tdt=\frac{2}{3}\int_{2}^{4}\frac{t}{t+1}dt=\frac{2}{3}\int_{2}^{4}(1-\frac{1}{t+1})dt=\frac{2}{3}(t-ln|1+t|)\left|\begin{matrix}4\\2 \end{matrix}\right.=\frac{4}{3}+\frac{2}{3}ln3-\frac{2}{3}ln5$

Do đó $a=\frac{4}{3};b=\frac{2}{3};c=-\frac{2}{3}$

Vậy $a+b+c=\frac{4}{3}$

=> Chọn đáp án B.

Ví dụ 3: Biết tích phân $\int_{0}^{ln6}\frac{e^{x}}{1+\sqrt{e^{x}+3}}dx=a+bln2+cln2$, với a, b, c là những số vẹn toàn. Tính T=a+b+c

A. T=-1

B. T=0

C. T=2

D.T=1

Giải:

Đặt t=$\sqrt{e^{x}+3}\Rightarrow t^{2}=e^{x}+3\Rightarrow 2tdt=e^{x}dx$

Đổi cận $\left\{\begin{matrix}x=ln6\\x=0 \end{matrix}\right.\Rightarrow \left\{\begin{matrix}
t=3\\t=2 \end{matrix}\right.$

Suy ra $\int_{0}^{ln6}\frac{e^{x}}{1+\sqrt{e^{x}+3}}dx=\int_{2}^{3}\frac{2tdt}{1+t}dt=(2t-2ln|t+1|)\left|\begin{matrix}3\\2 \end{matrix}\right.$

=$(6-2ln4)-(4-2ln3)=2-4ln2+2ln3 \Rightarrow \left\{\begin{matrix}a=2\\b=-4\\c=2 \end{matrix}\right.$

Vậy T=0

=> Chọn đáp án B

3.6. Tính vẹn toàn hàm của ln(lnx)/x

Tính vẹn toàn hàm $I=\int \frac{ln(lnx)}{x}dx$ được thành quả này sau đây?

Ví dụ 1: Tính vẹn toàn hàm của hàm số  I=$\int \frac{ln(lnx)}{x}dx$

Giải:

Đặt lnx=t => dt = $\frac{dx}{x}$

Suy rời khỏi I=$\int \frac{ln(lnx)}{x}dx=\int lntdt$

Đặt $\left\{\begin{matrix}u=lnt\\dv=dt \end{matrix}\right.\Rightarrow \left\{\begin{matrix}du=\frac{dt}{t}\\v=t \end{matrix}\right.$

Theo công thức tính vẹn toàn hàm từng phần tao có:

I=$tlnt-\int dt=tlnt-t+C=lnx.ln(lnx)-lnx+C$

Ví dụ 2:

Cho I=$\int_{1}^{e}\frac{lnx}{x(lnx+2)^{2}}dx=aln3+bln2+\frac{c}{3}$ với a, b, c $\in Z$. Khẳng ấn định này tại đây đích thị.

A. $a^{2}+b^{2}+c^{2}=1$

B. $a^{2}+b^{2}+c^{2}=11$

C. $a^{2}+b^{2}+c^{2}=9$

D. $a^{2}+b^{2}+c^{2}=3$

Giải:

Ta đem I=$\int_{1}^{e}\frac{lnx}{x(lnx+2)^{2}}dx, bịa đặt lnx+2=t => \frac{dx}{x}=dt$

I=$\int_{2}^{3}\frac{t-2}{t^{2}}dt=\int_{2}^{3}\frac{1}{t}dt-2\int_{2}^{3}\frac{1}{t^{2}}dt$

=$lnt\left|\begin{matrix}3\\2 \end{matrix}\right.+\frac{2}{t}\left|\begin{matrix}3\\2 \end{matrix}\right.$

=$ln3-ln2+\frac{2}{3}-\frac{2}{2}=ln3-ln2-\frac{1}{3}$

Suy rời khỏi a=1;b=-1;c=-1

Vậy $a^{2}+b^{2}+c^{3}=3$

Bên cạnh cơ, thầy Trường Giang đã đem bài xích giảng cực kỳ hoặc về vẹn toàn hàm tích phân với mọi tip giải bài xích tập luyện cực kỳ hữu ích nhằm giải đề đua trung học phổ thông Quốc gia. Các em nằm trong coi nhập video clip sau đây nhé!

Nắm hoàn hảo bí quyết đạt 9+ đua Toán đảm bảo chất lượng nghiệp trung học phổ thông Quốc Gia ngay

Sau nội dung bài viết này, kỳ vọng những em vẫn cầm chắc chắn được toàn cỗ lý thuyết, công thức về vẹn toàn hàm Inx, kể từ cơ áp dụng hiệu suất cao nhập bài xích tập luyện. Để nhận thêm nhiều kiến thức và kỹ năng hoặc em hoàn toàn có thể truy vấn ngay lập tức Vuihoc.vn nhằm ĐK thông tin tài khoản hoặc contact trung tâm tương hỗ để sở hữu được kiến thức và kỹ năng cực tốt sẵn sàng mang đến kỳ đua ĐH sắp tới đây nhé!

>> Xem thêm:

Xem thêm: urbanization has resulted in massive problems besides the benefits

  • Phương pháp tính tích phân từng phần và ví dụ minh họa
  • Đầy đầy đủ và cụ thể bài xích tập luyện phương trình logarit đem câu nói. giải
  • Tuyển tập luyện lý thuyết phương trình logarit cơ bản