Những hằng đẳng thức xứng đáng nhớ kiên cố thân thuộc gì với chúng ta . Hôm ni Kiến tiếp tục thưa kỹ rộng lớn về 7 hằng đẳng thức cần thiết : bình phương của một tổng, bình phương của một hiệu, hiệu của nhị bình phương, lập phương của một tổng, lập phương của một hiệu, tổng nhị lập phương và ở đầu cuối là hiệu nhị lập phương. Các các bạn nằm trong xem thêm nhé. Bạn đang xem: hằng đẳng thức mũ 3
1. Bình phương của một tổng
Với A, B là những biểu thức tùy ý, tao có: ( A + B )2 = A2 + 2AB + B2.
Ví dụ:
a) Tính ( a + 3 )2.b) Viết biểu thức x2+ 4x + 4 bên dưới dạng bình phương của một tổng.
Hướng dẫn:
a) Ta có: ( a + 3 )2= a2+ 2.a.3 + 32 = a2 + 6a + 9.
b) Ta với x2+ 4x + 4 = x2+ 2.x.2 + 22 = ( x + 2 )2.
2. Bình phương của một hiệu
Với A, B là những biểu thức tùy ý, tao có: ( A - B )2 = A2 - 2AB + B2.
3. Hiệu nhị bình phương
Với A, B là những biểu thức tùy ý, tao có: A2 - B2 = ( A - B )( A + B ).
4. Lập phương của một tổng
Với A, B là những biểu thức tùy ý, tao có: ( A + B )3 = A3 + 3A2B + 3AB2 + B3.
5. Lập phương của một hiệu.
Với A, B là những biểu thức tùy ý, tao có: ( A - B )3 = A3 - 3A2B + 3AB2 - B3.
Ví dụ :
a) Tính ( 2x - 1 )3.b) Viết biểu thức x3- 3x2y + 3xy2- y3 dưới dạng lập phương của một hiệu.
Hướng dẫn:
a) Ta có: ( 2x - 1 )3= ( 2x )3 - 3.( 2x )2.1 + 3( 2x ).12 - 13
= 8x3 - 12x2 + 6x - 1
b) Ta với : x3- 3x2y + 3xy2- y3= ( x )3 - 3.x2.nó + 3.x. y2 - y3
= ( x - nó )3
6. Tổng nhị lập phương
Với A, B là những biểu thức tùy ý, tao có: A3 + B3 = ( A + B )( A2 - AB + B2 ).
Chú ý: Ta quy ước A2 - AB + B2 là bình phương thiếu thốn của hiệu A - B.
Ví dụ:
a) Tính 33+ 43.b) Viết biểu thức ( x + 1 )( x2- x + 1 ) bên dưới dạng tổng nhị lập phương.
Hướng dẫn:
a) Ta có: 33+ 43= ( 3 + 4 )( 32 - 3.4 + 42 ) = 7.13 = 91.
b) Ta có: ( x + 1 )( x2- x + 1 ) = x3+ 13 = x3 + 1.
Xem thêm: bờ biển nước ta kéo dài khoảng 3260 km từ
7. Hiệu nhị lập phương
Với A, B là những biểu thức tùy ý, tao có: A3 - B3 = ( A - B )( A2 + AB + B2 ).
Chú ý: Ta quy ước A2 + AB + B2 là bình phương thiếu thốn của tổng A + B.
Ví dụ:
a) Tính 63- 43.b) Viết biểu thức ( x - 2y )( x2+ 2xy + 4y2) bên dưới dạng hiệu nhị lập phương
Hướng dẫn:
a) Ta có: 63- 43= ( 6 - 4 )( 62 + 6.4 + 42 ) = 2.76 = 152.b) Ta với : ( x - 2y )( x2+ 2xy + 4y2) = ( x )3 - ( 2y )3 = x3 - 8y3.
B. Bài luyện tự động luyện về hằng đẳng thức
Bài 1.Tìm x biết
a) ( x - 3 )( x2+ 3x + 9 ) + x( x + 2 )( 2 - x ) = 0.b) ( x + 1 )3- ( x - 1 )3- 6( x - 1 )2 = - 10.
Hướng dẫn:
a) gí dụng những hằng đẳng thức ( a - b )( a2+ ab + b2) = a3 - b3.( a - b )( a + b ) = a2 - b2.
Khi ê tao với ( x - 3 )( x2 + 3x + 9 ) + x( x + 2 )( 2 - x ) = 0.
⇔ x3 - 33 + x( 22 - x2 ) = 0 ⇔ x3 - 27 + x( 4 - x2 ) = 0
⇔ x3 - x3 + 4x - 27 = 0
⇔ 4x - 27 = 0
Vậy x= .
( a + b )3 = a3 + 3a2b + 3ab2 + b3
( a - b )2 = a2 - 2ab + b2
Khi ê tao có: ( x + 1 )3 - ( x - 1 )3 - 6( x - 1 )2 = - 10.
⇔ ( x3 + 3x2 + 3x + 1 ) - ( x3 - 3x2 + 3x - 1 ) - 6( x2 - 2x + 1 ) = - 10
⇔ 6x2 + 2 - 6x2 + 12x - 6 = - 10
⇔ 12x = - 6
Vậy x=
Bài 2: Rút gọn gàng biểu thức A = (x + 2y ).(x - 2y) - (x – 2y)2
- 2x2+ 4xy B. – 8y2+ 4xy
- - 8y2 D. – 6y2+ 2xy
Hướng dẫn
Ta có: A = (x + 2y ). (x - 2y) - (x – 2y)2
A = x2 – (2y)2 – [x2 – 2.x.2y +(2y)2 ]
A = x2 – 4y2 – x2 + 4xy - 4y22
Xem thêm: tóm tắt bài lặng lẽ sa pa
A = -8y2 + 4xy
- Hãy lưu giữ nó nhé
Những hằng đẳng thức xứng đáng nhớ bên trên đặc biệt cần thiết tủ kỹ năng của tất cả chúng ta . Thế nên chúng ta hãy nghiên cứu và phân tích và ghi lưu giữ nó nhé. Những đẳng thức ê chung tất cả chúng ta xử lý những câu hỏi dễ dàng và khó khăn một cơ hội dễ dàng và đơn giản, chúng ta nên thực hiện đi làm việc lại nhằm bạn dạng thân thích hoàn toàn có thể áp dụng chất lượng tốt rộng lớn. Chúc chúng ta thành công xuất sắc và siêng năng bên trên tuyến phố tiếp thu kiến thức. Hẹn chúng ta ở những bài bác tiếp theo
Bình luận